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LETTER TO THE EDITOR 

Adsorption of branched polymers at surfaces: exact results 
for d = 3  

U K Janssen and A Lyssy 
lnstitut f i r  Theoretische Physik 111, Heinrich-Heine-Univenitet Diisseldarf, 4M)O 
Diisseldorf I ,  Universititsstrasse 1, Federal Republic of Germany 

Received 3 February 1992 

Abstrwl. Exploiting the supersymmetric connection between the statistics of branched 
polymers and the problem of the Yang-Lee edge singularity, w e  study universal properlies 
of the adsorption transition of diluted branched p o l y "  in a !hree-dimensional solution 
at a hard wall. We calculate various scaling functions for the crosso~cr between the 
non-adsorbed and adsorbed slate exactly. In particular, the C~OSSOYCT exponent is found 
to be Q =f .  

In this letter we report on exact results for the adsorption transition of diluted branched 
polymers in a good solvent at a hard wall. This problem belongs to the same universality 
class as the statistics of trees and animals near an adsorptive surface of a semi-infinite 
lattice. It has been known for a number of years [I] that the statistics of large branched 
polymers in d spatial dimensions can be reduced via a supersymmetric connection to 
the problem of the Yang-Lee edge singularity in the Ising model in the presence of 
an imaginary external field in D = d -2 dimensions. A consequence of this connection 
is that universal properties of correlation functions and other interesting quantities of 
the branched polymer problem can be calculated, if one knows the corresponding 
quantities of the king model near the Yang-Lee singulanties in two dimensions less 
[ 2 ] .  It can be shown that this supersymmetric connection holds also for systems with 
a surface [3J. Thus from the exact results for the critical properties of the one- 
dimensional semi-infinite Ising chain in imaginary surface and bulk external fields, we 
get exact results for the adsorption transition of large branched polymers at a wall. 

The statistics of a semi-infinite Ising chain in external fields are modelled by the 
Hamiltonian 

m m 

% = - E  K u;u;+, - Hru, - C H u ~ .  
i = l  i - 2  

It is a textbook matter [4] to calculate, e.g. by the transfer-matrix method, the free 
energy, the magnetization M, =(ut), and the correlation function C, =(up,)(" as 
functions of the parameters K ,  H and H,. Going over to imaginary fields H-iH, 
H, + iH, the known result for the bulkmagnetization M = Iim,-- M, is given by 

M = i f f i  ( 2 )  

where h is defined by 

h = ( e 2 K  sin H ) - 2 - 1 .  (3) 
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Equation (2) shows the (one-dimensional) Yang-Lee singularity at h = 0. Denoting by 
wi the two eigenvalues of the transfer matrix and by a the lattice constant, the 
correlation length is given by 5 = a(ln(w+/w-))-'. It diverges at the Yang-Lee singular- 
ity as l/&. The critical properties are universal at the full singularity edge and therefore 
independent of the coupling constant K. Thus we simplify all expressions without 
losing their universal properties by choosing the 'low temperature' region K x 1 keeping 
&,=eZKa finite. Choosing now to as a unit for the length scale, we have a suitable 
device for performing the continuum limit a + 0. In this limit we find for the surface 
magnetization and the correlation length 

(Ji;+..KTi)f+l 
(Ji;+..KTi)- f M , = i  

5 = tad( 1 + h)/4h. (46) 

Here the parameter f is defined by f =tan HI. The surface magnetization shows the 
zero-dimensional Yang-Lee singularity at the surface-transition line f =&+m. 
The surface-bulk multicritical point is given by the parameter values h = 0, f = 1, and 
the crossover exponent is read off from (4a)  as 

4 = i  2 .  ( 5 )  

Furthermore, we find for the magnetization profile and the correlation function 

M ( z )  = ( I  -e-"S)M+e-"fM, ( 6 a )  

[ 1 - M (  min( z, z'))'] ( 6 6 )  c(z, z')  = , - I = - = ' I / <  

where z denotes the distance from the surface. 
Now we are in a position to calculate polymer quantities in dimension d = 3 by an 

inverse Laplace transformation 1 / ( 2 ~ i )  f-ymdH eCHN..  . of M(z)  and C(z, 2'). Here, 
up to a scale factor, N is the number of monomers of the branched polymer. Since 
N >> 1, only a small region around the critical value of H is effectively used by the 
integration, if we deform the integration path around the branch point singularities of 
the integrands. Thus we can approximate H by H ~ H , - e - ~ ~ h / 2 .  Hc=e-2K is a 
non-universal quantity. We renormalize N by the factor e-2K/2 and define 

im 

Z N ( z ) = & /  2Tl _im d h e h N M ( z )  

In particular, the inverse Laplace-transformed bulk magnetization ZN = ZN(m) yields, 
up to a non-universal exponential factor A N ,  the number dN of possible three- 
dimensional configurations of a branched polymer or animal made from N monomers 
or sites: A N Z N / N - d N - N - * A N  with e = $  We denote by . d N ( n , [ z , , n 2 [ z 2 ,  ... ) the 
number of such polymer configuration with ni monomers in the two-dimensional layer 
at a distance z. from the surface. Then we get from the supersymmetric connection, 
the relation 

m 

1 n ,  ... d N ( n o [ O ,  n l l z l , .  . .) e'"c'-ZN(z,,. . . ) A N .  (8) 
*-U 
(all i) 
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The adsorption energy E for a monomer at the surface is proportional to the field H ,  . 
Thus near the critical value E,, we have E - E , -  I -  1. 

Now we get from equations (6) and (7) our fundamental results 

Z N  (2) = {l+e-'z[l-2~;;re(r+c'2 e r fc ( r+OI}  (90) 

zN(z,z ' )  =erfc([-t') -2  e r f c ( ~ ) + e r f c ( ~ + ~ ' ) + 4 e " ' + ~ ' ~ - ~ *  e r f c ( r + t ) + g r  e-(<+')* 

x [(r + c+ 5') e('+(+<'* erfc(r+[+5')-1/JG]. (96) 
Here the last equation for Z,(z , z ' )=ZN(z ' , z )  is written down for z>z '  and erfc 
denotes the error function: erfc(x) = (2/&) exp(-y2) dy. If z is measured in units 
of to, thevariables Land Tare defined by [ = z / m a n d T = ( l - r ) J N - ( ~ ~ - ~ ) m .  
The expressions (sa) ,  (96) have the same structure as the corresponding quantities in 
the problem of the surface adsorption of idea! linear polymers as presented in the 
work of Eisenriegler er ol [5]. Thus we follow their discussion. 

Z N ( z ) A N  is proportional to the number of polymer configurations with one 
monomer rcoted in the !ayer z under the influence of the surface adsorption energy 
E. As remarked above, this quantity changes over for z + m to the animal number Nd, 
in the bulk, independent of E. In  the general case we have to distinguish between the 
three cases non-adsorbed ( E  < E J ,  critical ( E  = E J ,  and adsorbed ( E  > E = ) .  Because 
N >> 1, these cases correspond to the limiting values of the scaling variable r >> 1, r = 0 
and -r >> 1. We find 

(1  -e~I ' )+r - ' [2 t+r - l ]e -1 '  r>>i 

1 +4J;;lrl e l U ( l W 2 C  

1 
z N ( z ) = m {  (1+e/)  r=o (10) 

-r >> 1. 

For & < E , ,  Z,(z) approaches the bulk value l / a  for z large compared to the 
correlation length 5-m. However, this is not the case for E >  E~ (-r>>l), where 
a Z N ( z ) - l - l r l  exp[(z,-z)/Az,] which defines two more lengths Az,-(E-EJ' 
and zo- N ( E  - E J  with the orders of magnitude Azo<< (<< z,,. If one moves the root 
towards the surface, at the characteristic distance z = zo the physical properties change 
rapidly within a small interval of width Azo around zo from bulk to adsorbed behaviour. 

the dissipation-fluctuation theorem of the k ing  model by the inverse Laplace transfor- 
mation ( 7 a ) ,  ( 7 b ) .  Therefore we find for the monomer density in the layer z, if the 
polymer is rooted in the layer z' 

m 
!E g", we have !he re!a!inn I, dzZ& z' )  =2.NZ,!z'!, F h k h  fo!!ows fra!!? 

p N ( z I z ' )  = z N ( ?  2')/2ZN(z'). (11) 
If the root is fixed at the surface, equations ( s a ) ,  (96) yield 

2 
~ , ( ~ ) = ~ { ~ - J ; ; r e " e r f c ( r ) }  m (120) 

z N ( z ,  0) = 4 e-"{[ 1 + z r ( r + ~ ) ]  e"'+<" erfc(r+ i )  -2r/&), (126) 
From these expressions we find the asymptotic forms of the monomer density of a 
surface rooted polymer 

r>>i 

-r >> 1. 
r=o ( 1 3 )  
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The interpretation in terms of the cases non-adsorbed, critical, and adsorbed is obvious. 
Note that in the adsorbed case, the thickness of the polymer at the surface is given by 
the length Azo- ( E  - E J ' .  The number of polymer configurations rooted in the surface 
follows from the asymptotic form of Z N ( 0 )  in the three cases 

r > > i  

Now, the animal numbers for surface rooted branched polymers can be defined in 
analogy to the bulk animals: d N , , - A N Z N ( 0 ) / N .  In the non-adsorbed case we find 
d , ,  - N-"AN with an exponent 8,  =: = #+ 1 .  The last relation between the bulk and 
surface exponents was found for all dimensions by De'Bell er a /  [6] for lattice trees 
by rigorous arguments. In  the critical case E = E < ,  the animal numbers are d , ,  - N-'.A 
with B. = t. !n generz! dirt?ensions be!o-w eight, the exponen: 8, depend: nx :he bn!!: 
exponent 0 and the crossover exponent 4. We have derived the relation 

using field-theoretic renormalization group methods [ 3 ] .  In the adsorbed case E > E ~ ,  

we find 9p,hi,! - d:-? - N-O'A" with #'= 1. This result shows that the adsorbed branched 
polymers are indeed quasi-two-dimensional animals. In general 8' is the exponent in 
( d  - 1) bulk-dimensions. 

Now we consider the number d, (n) of possible configuration of branched polymers 
with n monomers at the surface made from N monomers. The various moments of 
d N ( n )  are defined by m P = K N  X7=o nPdN(n)e""  up  to the non-universal factor A N .  
We have m, - Z N ( 0 ) ,  m,-ZN(O,O),  etc. The moments can be derived by successive 
differentiation with respect to the variable E - E,- -r/JX. The general relation is 
d Z N ( r ) / J r =  - Z N ( z ,  0)/2m, etc. Defining the generating function FN - m, with 
d F N / J r = - Z N ( 0 ) / 2 m ,  we get 

1 
F --e"*erfc(r). (16) 

Mean vaiues may be defined by ( n " ) =  m,/m,. ]ne ratio of the second and the first 
moment is proportional to the monomer density ~ ~ ( 0 1 0 ) .  The asymptotic expressions 
can be read off from equation (13) 

N - 2 N  
.. - 

2/(1 - I )  & < E ,  

( n 2 ) / ( n ) -  m E = & ,  (17) 
1)N E >  &c.  

A final result which we can infer from the generating function is the number of 
possible configuration of branched polymers at the surface. We find from equation (16) 

A N  (18) 

%is e::& DE: exact res=!% i:: three di--e::sinx.. !! *nu!d be in:ere-stit?g :e compare 

9 p N ( , , ) =  a ~ - 3 / 2  e - D f l z / N - ~ "  

where a, b, c, and A are non-universal constants. 

these results, for example, with Monte Carlo simulations. We are aware of only one 
such simulation [7]. The authors 'measure' a type of specific heat ( (n2) - (n)*) /N.  Since 
the exact crossover exponent is @ = f ,  it is easily shown that this quantity is not 
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characteristic for the adsorption transition discussed above. It may be possible that 
the authors have found another adsorption transition, which leads to more compact 
objects than animals in two dimensions [3]. 

The authors thank R Blossey for a critical reading of the manuscript. This work has 
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Fluktuationen' (Disorder and Large Fluctuations) of the Deutsche Forschungsgemein- 
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